Cutting plane and Frege proofs

نویسنده

  • Peter Clote
چکیده

The cutting plane refutation system CP for propositional logic is an extension of resolution and is based on showing the non-existence of solutions for families of integer linear inequalities. We deene the system CP + , a modiication of the cutting plane system, and show that CP + can polynomially simulate Frege systems F. In 8], it is shown that F polynomially simulates CP + , so both systems are polynomially equivalent. To establish this result, propositional formulas are represented in a natural manner, and an eeective version of cut elimination is proved for the system CP +. Additionally, an alternative proof is given which directly translates F proofs into CP +. Thus, within a polynomial factor, one can simulate classical propositional logic proofs using the cut rule by refutation-style proofs involving linear inequalities with the ceiling operation. Since there are polynomial size cutting plane CP proofs for many elementary combinatorial principles (pigeonhole principle, k-equipartition principle), we propose propositional versions of the Paris-Harrington theorem , Kanamori-McAloon theorem, and variants as possible candidates for combinatorial tautologies which may require exponential size cutting plane and Frege proofs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper and Lower Bounds for Tree-Like Cutting Planes Proofs

In this paper we study the complexity of Cutting Planes (CP) refutations, and tree-like CP refutations. Tree-like CP proofs are natural and still quite powerful. In particular, the propositional pigeonhole principle (PHP) has been shown to have polynomial-sized tree-like CP proofs. Our main result shows that a family of tautologies, introduced in this paper requires exponential-sized tree-like ...

متن کامل

Cutting planes, connectivity, and threshold logic

Originating from work in operations research the cutting plane refutation system CP is an extension of resolution, where unsatisfiable propositional logic formulas in conjunctive normal form are recognized by showing the non-existence of boolean solutions to associated families of linear inequalities. Polynomial size CP proofs are given for the undirected s-t connectivity principle. The subsyst...

متن کامل

Lower Bounds for Cutting Planes Proofs with Small Coe cients

We consider small-weight Cutting Planes (CP) proofs; that is, Cutting Planes (CP) proofs with coeecients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simple...

متن کامل

Short Proofs of the Kneser-Lovász Coloring Principle

We prove that the propositional translations of the KneserLovász theorem have polynomial size extended Frege proofs and quasipolynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lovász theorem that avoids the topological arguments of prior proofs. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma. The prop...

متن کامل

Propositional Consistency Proofs

Partial consistency statements can be expressed as polynomial-size propositional formulas. Frege proof systems have polynomial-size partial self-consistency proofs. Frege proof systems have polynomialsize proofs of partial consistency of extended Frege proof systems if and only if Frege proof systems polynomially simulate extended Frege proof systems. We give a new proof of Reckhow’s theorem th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Comput.

دوره 121  شماره 

صفحات  -

تاریخ انتشار 1995